Цепи транзистора с общей базой

Цепи транзистора с общей базой

В каскаде, собранном по схеме с общей базой, напряжение входного сигнала подают между эмиттером и базой транзистора, а выходное напряжение снимают с выводов коллектор-база. Включение транзистора p-n-p структуры по схеме с общей базой и схема усилителя на n-p-n транзисторе приведено на рисунке 46.

Рисунок 46 – Схема с общей базой транзистор p-n-p и усилитель на n-p-n транзисторе

В данном случае эмиттерный переход транзистора открыт и велика его проводимость.

Входное сопротивление каскада невелико и обычно лежит в пределах от единиц до сотни Ом, что относят к недостатку описываемого включения транзистора. Кроме того, для функционирования каскада с транзистором, включённым по схеме с общей базой, необходимо два отдельных источника питания.

Коэффициент усиления каскада по току меньше единицы.

Коэффициент усиления каскада по напряжению часто достигает от десятков до нескольких сотен раз.

К достоинствам нужно отнести возможность функционирования каскада на существенно более высокой частоте по сравнению с двумя другими вариантами включения транзистора, и слабое влияние на работу каскада флюктуаций температуры. Именно поэтому каскады с транзисторами, включёнными по схеме с общей базой, часто используют для усиления высокочастотных сигналов.

Дата добавления: 2014-12-22 ; просмотров: 1707 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Входные ВАХ транзистора с общей базой:

Входные характеристики здесь в значительной степени определяются характеристикой открытого эмиттерного p — n -перехода, поэтому они аналогичны ВАХ диода, смещенного в прямом направлении. Сдвиг характеристик влево при увеличении напряжения uКБ обусловлен так называемым эффектом Эрли (эффектом модуляции толщины базы), заключающимся в том, что при увеличении обратного напряжения uКБ коллекторный переход расширяется, причем в основном за счет базы. При этом толщина базы как бы уменьшается, уменьшается ее сопротивление, что приводит к уменьшению падения напряжения uБЭ при неизменном входном токе.

Выходные ВАХ транзистора с общей базой:

Из рисунка видно, что ток коллектора становится равным нулю только при uКБ 0 и токе эмиттера, равном нулю, транзистор находится в режиме отсечки, который характеризуется очень малым выходным током, равным обратному току коллектора IК0, то есть график ВАХ, соответствующий iЭ = 0, практически сливается с осью напряжений.

8. Биполярные транзисторы, вах транзистора включенного по схеме с общим эмиттером:

Входные ВАХ транзистора с общим эмиттером:

Выходные ВАХ транзистора с общим эмиттером:

Проанализируем, почему малые изменения тока базы Iбвызывают значительные изменения коллекторного тока Iк. Значение коэффициента β, существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА.

9. Особенности применения полевых и биполярных транзисторов. Схема Дарлингтона:

Особенности применения полевых транзисторов:

Есть область, для которой полевые транзисторы подходят практически идеально. Это силовые устройства, где необходимо замыкать и размыкать силовые цепи постоянного тока. Это импульсные источники питания, регуляторы мощности потребителей постоянного тока, автоматика.

Полевые транзисторы имеют высокое входное сопротивление постоянному току, что является неоспоримым преимуществом при относительно редком переключении. Расход энергии на управление полевиком в этом случае минимален. Если переключаться надо часто, то в дело вступают емкости затвор — исток и затвор — сток. На их зарядку нужно тратить энергию. Так что по мере роста частоты переключений расход энергии растет, и у полевого транзистора появляются конкуренты, например, биполярные. Но есть еще одно ключевое преимущество — отрицательный температурный коэффициент при большом токе нагрузки. Этот эффект проявляется в том, что по мере нагрева при большом токе стока сопротивление полевого транзистора нарастает. С одной стороны это позволяет соединять полевые транзисторы параллельно без всяких проблем. Токи в них быстро выравниваются самостоятельно, без всякого нашего участия. С другой стороны цельный мощный полевой транзистор можно представить, как соединенные параллельно маломощные (такие полосочки токопроводящего канала полевика). Сила тока в этих полосочках при прогреве выравнивается, так что полевой транзистор проводит ток по всему сечению канала равномерно. Это обуславливает способность полевых транзисторов работать при больших токах. Например, биполярный транзистор имеет положительный температурный коэффициент. Если в какой-то части кристалла появляется большая проводимость, чем вокруг, то это место прогревается сильнее, туда устремляется все больший ток. Итак до прогорания.

Читайте также:  Как сварить металл без сварки

Полевые транзисторы с изолированным затвором следует хранить с закороченными выводами. При включении транзисторов в схему должны быть приняты все меры для снятия зарядов статического электричества. Необходимую пайку производить на заземленном металлическом листе, заземлить жало паяльника, а так же руки монтажника при помощи специального металлического браслета. Не следует применять одежду из синтетических тканей. Целесообразно подсоединять полевой транзистор к схеме, предварительно закоротив его выводы.

Особенности применения биполярных транзисторов:

Основная области применения Биполярных транзисторов, как дискретных, так и в составе ИС,— генерирование, усиление или преобразование электрических сигналов. К оснновным параметрам Биполярных транзисторов относят коэффициент передачи по току (от нескольких единиц до нескольких сотен), граничную частоту (от сотен кГц до 8—10 ГГц), отдаваемую мощность (от мВт до сотен Вт), коэффициент шума (в малошумящих Б. т. 1,5—2,0 дБ), время переключения (от сотен пс для транзисторов-элементов СБИС до десятков мкс), а также предельные параметры эксплуатации: максимально допустимые значения напряжений коллектор — база (коллектор — эмиттер) и эмиттер — база, тока коллектора, допустимой мощности рассеяния. Максимально допустимые значения токов в Биполярных транзисторах лежат в пределах от десятков мкА до сотен А, напряжений коллектора — от нескольких В (в ИС) до нескольких кВ, допустимая мощность рассеяния — от единиц мкВт (в составе ИС) до 1 кВт и более.

В Биполярном транзисторе режим работы определяется полярностью напряжений, прикладываемых к эмиттерному и коллекторному переходам. Если к выводам коллектора и базы или коллектора и эмиттера прикладывают напряжение такой полярности, что коллекторный переход смещается в обратном направлении, то при прямом смещении на эмиттерном переходе Биполярного транзистора находится в активном режиме, или режиме усиления, а при обратном смещении — в режиме отсечки. При прямом смещении на обоих переходах Биполярного транзистора находится в режиме насыщения. В активном режиме из эмиттерной области Биполярного транзистора в базовую область инжектируются неосновные носители заряда, которые, частично рекомбинируя, переносятся к коллекторному переходу и через коллекторную область попадают в коллекторный вывод, образуя ток коллектора. Базовый ток во много раз меньше эмиттерного (и коллекторного токов и равен их разности. Напряжением, прикладываемым к эмиттерному переходу, регулируют количество неосновных носителей заряда, инжектируемых в базовую область, т. е. протекающий через Биполярный транзистор ток. При прямом смещении эмиттерного перехода токи через транзистор также могут сохранять малые значения, пока приложенное напряжение не превышает порогового значения (для кремниевых транзисторов около 0,6 В; для германиевых — около 0,3 В).

Если соединить транзисторы, как показано на рисунке, то полученная схема будет работать как один транзистор, причем его коэффициент будет равен произведению коэффициентов составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.

Читайте также:  Секатор садовый black decker

Составной транзистор Дарлингтона.

Повышение скорости выключения в составном транзисторе Дарлингтона:

В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора должен превышать потенциал эмиттера транзистора на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор не может быстро выключить транзистор . С учетом этого свойства обычно между базой и эмиттером транзистора включают резистор. Резистор R предотвращает смещение транзистора в область проводимости за счет токов утечки транзисторов. Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем, чтобы через него протекал ток, малый по сравнению с базовым током транзистора. Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.

Усилитель представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общей базой — это усилитель, где база транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с ОБ приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общей базой

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. Для питания транзистора в схеме с общей базой может подойти любая из рассмотренных нами схем: схема с фиксированным током базы, схема с фиксированным напряжением на базе, схема с коллекторной стабилизацией или схема с эмиттерной стабилизацией. Расчет резисторов, входящих в эти схемы не зависит от схемы включения транзистора и для схемы с общей базой проводится точно так же как и для схемы с общим эмиттером. На рисунке 3 показана принципиальная схема каскада на биполярном npn-транзисторе, выполненного по схеме с ОБ.


Рисунок 3 Принципиальная схема включения транзистора с общей базой

В усилительном каскаде, изображенном на рисунке 3, используется схема эмиттерной стабилизации тока коллектора, обладающая наилучшими характеристиками по стабильности режима транзистора. В ряде случаев достаточно коллекторной стабилизации. Схема каскада усиления с коллекторной стабилизацией и схемой включения транзистора с общей базой приведена на рисунке 4.


Рисунок 4 Принципиальная схема включения транзистора с ОБ (коллекторная стабилизация режима)

Отличительной особенностью схемы с общей базой является малое входное сопротивление. Входным сопротивлением этого усилительного каскада является эмиттерное сопротивление транзистора. Его можно определить по следующей формуле:

(1)

При токе эмиттера 5 мА входное сопротивление каскада с общей базой составит 5 Ом. Это накладывает определенные ограничения на применение данной схемы. Сопротивление источника сигнала должно быть малым. Это может быть полезным для реализации высокочастотных усилителей. Часто приходится использовать на входе схемы с ОБ трансформатор сопротивления. Это может быть как обычный широкополосный трансформатор, так и фильтр с различными входным и выходным сопротивлением.

По току схема усилительного каскада с общей базой усилением не обладает. Более того, коэффициент передачи этой схемы меньше единицы! Коэффициент усиления по току схемы включения транзистора с общей базой можно определить по следующей формуле:

Читайте также:  Как сделать легкую дверь своими руками

(2)

Коэффициент усиления по напряжению усилительного каскада, собранного по схеме с общей базой совпадает с коэффициентом усиления по напряжению схемы с общим эмиттером. Его можно определить по следующей формуле:

(3)

Учитывая, что коэффициент усиления по току h21б схемы с общей базой близок к единице, то коэффициент усиления по напряжению будет равен отношению сопротивления нагрузки Rн к входному сопротивлению этого транзисторного каскада rэ. Отсюда следует вывод: если вы нагрузите усилительный каскад с ОБ, на точно такой же каскад усиления, то коэффициент усиления первого каскада будет равен единице (он не будет усиливать, так как ).

Учитывая, что ток коллектора в схеме с общей базой протекает по сопротивлению R1, включенному параллельно источнику сигнала, получается, что данный усилительный каскад охвачен 100% параллельной отрицательной обратной связью по току. Это приводит к расширению полосы пропускания усилителя. Малое входное сопротивление усилительного каскада не позволяет шунтировать входной сигнал паразитными емкостями печатной платы и других электронных компонентов схемы. Кроме того, малая проходная емкость Cкэ, образованная последовательным включением эмиттерного и коллекторного переходов, уменьшает значение входной паразитной емкости схемы с общей базой. Все эти факторы приводят к исключительной широкополосности амплитудно-частотной характеристики данного каскада.

Схема включения транзистора с общей базой используется обычно в высокочастотных усилителях. Для приведения входного и выходного сопротивления транзистора к стандартному волновому сопротивлению линий передачи 50 Ом обычно используются фильтры нижних или верхних частот. При индуктивном сопротивлении базы и коллектора транзистора в рабочем диапазоне частот усилителя, эти реактивности могут быть включены в состав индуктивности фильтра, как это показано на рисунке 5


Рисунок 5 Принципиальная схема усилительного каскада с транзистором с общей базой (коллекторная стабилизация)

В схеме усилителя, изображенной на рисунке 5, индуктивность L1 служит для обеспечения пути протекания эмиттерного тока, а индуктивность L2 служит для обеспечения пути протекания коллекторного тока, поэтому дополнительных сопротивлений, таких как R1 и R2 в схеме на рисунке 3 не требуется. Резисторы R1 и R2 образуют схему коллекторной стабилизации режима работы. Еще один вариант высокочастотного усилителя, выполненного по схеме с общей базой, приведен на рисунке 6.


Рисунок 6 Принципиальная схема усилительного каскада с транзистором с общей базой (эмиттерная стабилизация)

В настоящее время в СВЧ усилителях в основном используются SiGe, GaAs, GaN МОП-транзисторы, однако их схемы включения практически совпадают со схемами включения биполярных транзисторов. Схеме включения транзистора с общей базой соответствует схема усилительного каскада с общим затвором. В этих схемах для стабилизации режима работы транзистора применяется схема истоковой стабилизации (аналог эмиттерной стабилизации). Схема усилительного каскада с общим затвором приведена на рисунке 7.


Рисунок 7 Принципиальная схема усилительного каскада с транзистором с общим затвором (истоковая стабилизация)

По подобным схемам ряд зарубежных фирм выпускает готовые СВЧ усилители. Границы усилителя показаны на рисунках 6 и 7 пунктирной линией. В качестве примера на рисунке 8 показана схема высокочастотного интегрального усилителя радиочастоты.


Рисунок 8 Принципиальная схема высокочастотного интегрального усилителя радиочастоты

Подобные усилители широко применяются для увеличения уровня сигнала GPS, GSM, WiFi и др. систем связи и беспроводного интернета. В качестве примера подобных усилителей можно назвать усилители радиочастоты фирмы MAXIM, VISHAY или RF Micro Devices.

Дата последнего обновления файла 30.06.2019

  1. Шило В. Л. "Линейные интегральные схемы в радиоэлектронной аппаратуре" под ред. Е.И. Гальперина — М.: "Сов. радио" 1974
  2. Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
  3. Схемы включения транзистора

Вместе со статьей "Схема с общей базой (каскад с общей базой)" читают:

Ссылка на основную публикацию
Центробежный вентилятор устройство и принцип работы
Вентилятор — устройство для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на выходе и входе не более...
Цвета сочетающиеся с ярко зеленым
Правильное сочетание 30 цветов: от белого до чёрного. Белый сочетается со всеми цветами. Наилучшее сочетание с синим, красным и черным....
Цвета хорошо сочетающиеся с синим
lookcolor.ru » Сочетание цветов » Сочетание синего цвета и его оттенков Сочетание синего цвета – это контрастные комбинации с теплыми...
Цены металлочерепица фото размеры
Расчет кровель из металлочерепицы имеет ряд особенностей, которые обусловлены геометрией материала, а также требованиями его монтажа. При выполнении таких расчетов...
Adblock detector