Частота вращения по окружности

Частота вращения по окружности

Перемещение тел по окружности достаточно распространено в нашей жизни и в природе. Яркими примерами этого типа перемещения являются вращения ветровых мельниц, планет вокруг своих звезд и колес транспортных средств. В данной статье рассмотрим, какими формулами движение по окружности тел описывается.

Перемещение по окружности и по прямой линии в физике

В физике вопросами движения занимается кинематика. Она устанавливает связь между величинами, описывающими этот процесс. В динамике также уделяется внимание движению, однако она ориентирована на описание причин его возникновения. Другими словами, если для кинематики главными физическими величинами являются путь и скорость, то для динамики — это действующие на тела силы.

Вам будет интересно: Интерес: определение, понятие, типы и функции

В физике принято выделять два идеальных типа траекторий движения:

Математический аппарат для описания движения по обоим типам траекторий развит настолько хорошо, что понимание формул, например для прямолинейного движения, автоматически приводит к пониманию выражений для движения по окружности. Единственная принципиальная разница между формулами указанных типов перемещения заключается в том, что для движения по окружности удобно использовать угловые характеристики, а не линейные.

Далее в статье будем рассматривать исключительно кинематические формулы движения по окружности тел, не вдаваясь в подробности динамики.

Угловые характеристики движения: угол поворота

Прежде чем записывать формулы движения по окружности в физике, следует ввести величины, которые будут фигурировать в этих формулах.

Начнем с угла поворота. Будем обозначать его греческой буквой θ (тета). Поскольку вращение предполагает движение точки вдоль одной и той же окружности, то значение угла поворота θ за определенный промежуток времени можно использовать для определения количества оборотов, которое сделала эта точка. Напомним, что вся окружность равна 2*pi радиан, или 360o. Тогда формула для числа оборотов n через угол θ примет вид:

Здесь и далее во всех формулах угол выражается в радианах.

Пользуясь известным углом θ, также можно определить линейное расстояние, которое точка прошла вдоль окружности. Это расстояние будет равно:

Вам будет интересно: Педагогическая система Макаренко: принципы и компоненты

Здесь r — радиус рассматриваемой окружности.

Угловая скорость и ускорение

Кинематические формулы движения по окружности точки предполагают также использование понятий угловой скорости и углового ускорения. Обозначим первую буквой ω (омега), а вторую буквой α (альфа).

Физический смысл угловой скорости ω прост: эта величина показывает, на какой угол в радианах поворачивается точка за каждую секунду времени. Данное определение имеет следующее математическое представление:

Эта формула скорости движения по окружности записана в дифференциальной форме. Полученная с ее помощью величина ω называется мгновенной скоростью. Ее удобно использовать, если движение не является равномерным, то есть происходит с переменной скоростью.

Угловое ускорение α — это величина, которая описывает быстроту изменения скорости ω, то есть:

Угловое ускорение измеряется в радианах в секунду квадратную (рад/с2). Так, 1 рад/с2 означает, что тело увеличивает за каждую секунду времени скорость на 1 рад/с.

Учитывая выражение для ω, записанное выше, равенство можно представить в такой форме:

В зависимости от особенностей движения по окружности величина α может быть постоянной, переменной или нулевой.

Равномерное движение

Когда на вращающееся тело не действует никакая внешняя сила, то угловая скорость будет оставаться постоянной сколь угодно длительное время. Такое движение получило название равномерного вращения. Оно описывается следующей формулой:

В этом выражении переменными являются всего две величины: t и θ. Скорость ω = const.

Следует отметить один важный момент: нулю равна лишь равнодействующая внешних сил на тело, внутренние же силы, действующие в системе, нулю не равны. Так, внутренняя сила заставляет вращающееся тело изменять свою прямолинейную траекторию на криволинейную (окружность). Эта сила приводит к появлению центростремительного ускорения. Последнее не изменяет ни скорость ω, ни линейную скорость v, оно лишь изменяет направление движения.

Равноускоренное движение по окружности

Вам будет интересно: Академик Рыбаков Б.А.: биография, археологическая деятельность, книги

Формулы для этого типа перемещения можно получить непосредственно из приведенных математических выражений для величин ω и α. Равноускоренное движение предполагает, что за более-менее длительный промежуток времени модуль и направление ускорения α не изменяются. Благодаря этому можно проинтегрировать дифференциальное выражение для α и получить следующие две формулы:

Очевидно, что в первом случае движение будет равноускоренным, во втором — равнозамедленным. Величина ω0 здесь — это некоторая начальная скорость, которой вращающееся тело обладало до появления ускорения.

Читайте также:  Что полезно для суставов ног

Для равноускоренного движения не существует конечной скорости, поскольку она может возрастать сколь угодно долго. Для равнозамедленного движения конечным состоянием будет прекращение вращения, то есть ω = 0.

Теперь запишем формулы для определения угла θ при движении с постоянным ускорением. Эти формулы получаются, если произвести двойное интегрирование по времени для выражения α через θ. Получаются следующие выражения:

То есть центральный угол θ, на который тело повернется за время t, будет равен сумме двух слагаемых. Первое слагаемое — это вклад в θ равномерного движения, второе — равноускоренного (равнозамедленного).

Связь между угловыми и линейными величинами

При рассмотрении понятия угла поворота θ уже была приведена формула, которая его связывает с линейным расстоянием L. Здесь же рассмотрим аналогичные выражения для скорости ω и ускорения α.

Линейная скорость v при равномерном движении определяется как расстояние L, пройденное за время t, то есть:

Подставляя сюда выражение для L через θ, получаем:

Мы получили связь между линейной и угловой скоростью. Важно отметить, что удобство использования угловой скорости связано с тем, что она не зависит от радиуса окружности. В свою очередь, линейная скорость v возрастает линейно с увеличением r.

Остается записать связь между линейным ускорением a и его угловым аналогом α. Чтобы это сделать, запишем выражение для скорости v при равноускоренном движении без начальной скорости v0. Получаем:

Подставляем сюда полученное выражение связи между v и ω:

Как и скорость, линейное ускорение, направленное по касательной к окружности, зависит от радиуса.

Ускорение центростремительное

Выше уже было сказано несколько слов об этой величине. Здесь приведем формулы, которые можно использовать для ее вычисления. Через скорость v выражение для центростремительного ускорения ac имеет вид:

Через угловую скорость его можно записать так:

Величина ac не имеет никакого отношения к тангенциальному ускорению a. Центростремительное ускорение обеспечивает поддержание вращающегося тела на одной окружности.

Задача на определение угловой скорости вращения планеты

Известно, что ближе всего к солнцу находится Меркурий. Полагая, что он вращается по окружности вокруг светила, мы можем определить его угловую скорость ω.

Для решения задачи следует обратиться к справочным данным. Из них известно, что планета делает полный оборот вокруг светила за 87 дней 23,23 часа земных. Это время называется периодом обращения. Учитывая, что движение происходит с постоянной угловой скоростью, запишем рабочую формулу:

Остается перевести время в секунды, подставить значение угла θ, соответствующее полному обороту (2*pi), и записать ответ: ω = 8,26*10-7 рад/c.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: движение по окружности с постоянной по модулю скоростью, центростремительное ускорение.

Равномерное движение по окружности — это достаточно простой пример движения с вектором ускорения, зависящим от времени.

Пусть точка вращается по окружности радиуса . Скорость точки постоянна по модулю и равна . Скорость называется линейной скоростью точки.

Период обращения — это время одного полного оборота. Для периода имеем очевидную формулу:

Частота обращения — это величина, обратная периоду:

Частота показывает, сколько полных оборотов точка совершает за секунду. Измеряется частота в об/с (обороты в секунду).

Пусть, например, . Это означает, что за время точка совершает один полный
оборот. Частота при этом получается равна: об/с; за секунду точка совершает 10 полных оборотов.

Угловая скорость.

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1 ).

Рис. 1. Равномерное движение по окружности

Пусть — начальное положение точки; иными словами, при точка имела координаты . Пусть за время точка повернулась на угол и заняла положение .

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

Угол , как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол . Поэтому

Сопоставляя формулы (1) и (3) , получаем связь линейной и угловой скоростей:

Закон движения.

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1 , что

Но из формулы (2) имеем: . Следовательно,

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

Читайте также:  Схема монтажа стропильной системы

Центростремительное ускорение.

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5) :

С учётом формул (5) имеем:

Полученные формулы (6) можно записать в виде одного векторного равенства:

где — радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1 ). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

Выразим угловую скорость из (4)

и подставим в (8) . Получим ещё одну формулу для центростремительного ускорения:

На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

Криволинейное движение

На прошлых уроках мы имели дело только с прямолинейным движением (имеется одна координатная ось, и все силы, скорость, ускорение направлены вдоль нее). Для того чтобы разобраться с криволинейным движением, поступим так, как принято в науке – необходимо сложную задачу свести к нескольким простым, способ решения которых нам известен. Рассмотрим два метода.

1. Превратим криволинейное движение в прямолинейное. Для этого кривую траекторию разбиваем на множество участков, которые условно считаем прямолинейными (см. Рис. 1). Однако этот метод является очень трудоемким.

Рис. 1. Кривую траекторию можно представить как множество прямых отрезков

2. Любую кривую траекторию можно представить как совокупность движения по дугам окружностей разных радиусов (см. Рис. 2). При этом траектория разбивается на меньшее количество частей, чем при разбитии на прямые отрезки.

Рис. 2. Кривую траекторию можно представить как совокупность движения по дугам окружностей

Поэтому, для того чтобы научиться работать с криволинейным движением, достаточно научиться работать с движением по окружности.

Во многих задачах можно пользоваться и первым, и вторым способом работы с криволинейным движением.

Линейная скорость

При криволинейном движении скорость постоянно изменяет свое направление, тело поворачивается.

Пусть дана некоторая криволинейная траектория. Пройденный путь по этой траектории – это дуга AB, а перемещение – это вектор, направленный вдоль хорды AB. В данном случае вектор скорости во время движения не направлен так же, как вектор перемещения.

Если разбить дугу AB на множество прямых отрезков, то можно считать, что на каждом из них вектор скорости направлен вдоль отрезка (см. Рис. 3).

Рис. 3. Криволинейная траектория

Если совершать предельный переход к точке (см. Рис. 4), то видно, что вектор скорости будет направлен строго по касательной к траектории движения.

Рис. 4. Направление вектора скорости

Следовательно, при движении тела по криволинейной траектории мгновенная скорость направлена по касательной к данной точке траектории.

Пример. Если прижать к вращающемуся точильному камню концы стального прутка, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой они обладали в момент отрыва от камня. Направление вылета искр всегда совпадает с касательной к окружности в той точке, где пруток касается камня (см. Рис. 5).

Рис. 5. Вылет искр при работе на точильном станке (Источник)

Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

Рис. 6. Равномерное движение по окружности

То есть модуль мгновенной скорости не меняется:

Такую скорость называют линейной.

Центростремительное ускорение

Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A, получаем вектор .

Рис. 7. Векторы скорости

Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

Следовательно, любое криволинейное движение является ускоренным.

Направление центростремительного ускорения

Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

Читайте также:  Как снять блокировку с духового шкафа bosch

Следовательно, оба угла при основании этого треугольника неограниченно близки к :

Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

Формула центростремительного ускорения

На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

Подставим полученное выражение для AB в формулу подобия треугольников:

Характеристики вращательного движения

Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

1. Периодом вращения (T) называется время одного полного оборота. Измеряется в системе СИ в секундах.

Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца – за 1 год ().

Формула для вычисления периода:

,

где – полное время вращения; – число оборотов.

2. Частота вращения (n) – число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

Формула для нахождения частоты:

,

где – полное время вращения; – число оборотов

Частота и период – обратно пропорциональные величины:

3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

Формула для нахождения угловой скорости:

,

где – изменение угла; – время, за которое произошел поворот на угол .

Такой величиной, как угловая скорость, удобно пользоваться для описания движения тела по окружности, так как для точек, которые лежат на одном радиусе, угловая скорость при вращении одинакова. В отличие от угловой, линейная скорость тем больше, чем дальше точка от оси вращения.

Для примера рассмотрим дом и спутник, который обеспечивает телевизионный сигнал. Дом вращается вместе с Землей, поэтому спутник должен все время «висеть» над домом для обеспечения бесперебойного сигнала, то есть вращаться одинаково с Землей. На рисунке 9 изображены дуги окружностей, по которым двигаются дом с Землей и спутник. Линейная скорость спутника больше, чем линейная скорость дома, так как он проходит большее расстояние за одно и то же время. Но Земля и спутник за это время поворачиваются на одинаковый угол, поэтому в таких случаях говорят, что у тел одинаковая угловая скорость.

Рис. 9. Вращение Земли и спутника

Для того чтобы связать угловую и линейную скорость, рассмотрим один полный оборот тела по окружности:

-путь тела будет равен длине окружности:

— угловое перемещение будет равно :

— время полного оборота равно периоду:

Подставим эти данные в формулы для скоростей:

– угловая скорость

– линейная скорость

связь между линейной и угловой скоростью

Центростремительное ускорение связано с линейной скоростью формулой:

Зная, что , получаем формулу, которая связывает центростремительное ускорение с угловой скоростью:

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10–11. – М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. – М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Вопросы в конце параграфа 19 (стр. 51); упражнение 5 (1, 2) стр. 52 – Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы) (Источник)
  2. Период вращения лопастей ветряной мельницы равен 5 с. Определите число оборотов лопастей за 1 ч.
  3. Велосипедист движется по закруглению дороги радиусом 50 м со скоростью 36 км/ч. С каким ускорением он проходит закругление?
  4. Земля вращается вокруг своей оси с центростремительным ускорением 0,034 . Определите угловую скорость вращения, если радиус Земли – 6400 км.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Центробежный вентилятор устройство и принцип работы
Вентилятор — устройство для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на выходе и входе не более...
Цвета сочетающиеся с ярко зеленым
Правильное сочетание 30 цветов: от белого до чёрного. Белый сочетается со всеми цветами. Наилучшее сочетание с синим, красным и черным....
Цвета хорошо сочетающиеся с синим
lookcolor.ru » Сочетание цветов » Сочетание синего цвета и его оттенков Сочетание синего цвета – это контрастные комбинации с теплыми...
Цены металлочерепица фото размеры
Расчет кровель из металлочерепицы имеет ряд особенностей, которые обусловлены геометрией материала, а также требованиями его монтажа. При выполнении таких расчетов...
Adblock detector