Назовите неподвижную часть электромагнитного прибора

Назовите неподвижную часть электромагнитного прибора

Устройство и принцип действия электромагнитного ИМ

Принцип действия электромагнитного измерительного механизма основан на взаимодействии магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника.

В настоящее время чаще других применяют электромагнитные измерительные механизмы с прямоугольным и круглыми намагничивающими катушками, призматическими и цилиндрическими сердечниками. На рис. 4.6 показана конструкция электромагнитного измерительного механизма втяжного действия.

Рис. 4.7. Устройство электромагнитного механизма

При прохождении тока I по намагничивающей катушке 1 создается магнитное поле. Ферромагнитный сердечник 2, закрепленный на оси 3, при этом стремится расположиться в месте с наибольшей напряженностью поля, т. е. втягивается в зазор катушки. В электромагнитном приборе с осью 3 связана стрелка 4, которая перемещается по шкале 5. Электромагнитная энергия, создаваемая катушкой с током, определяется следующим образом: We = LI 2 /2, где L — индуктивность катушки 1, зависящая от положения ферромагнитного сердечника 2.

Выражение для вращающего момента представляется как

(4.9)

При создании противодействующего момента с помощью пружинок получим уравнение преобразования электромагнитного прибора

(4.10)

следует, что угол отклонения подвижной части электромагнитного механизма не зависит от направления тока, и эти ИМ могут использоваться в цепях постоянного и переменного тока. В цепи переменного тока угол отклонения подвижной части ИМ зависит от квадрата действующего значения тока.

Области применения, достоинства и недостатки

Приборы на основе электромагнитного измерительного механизма применяются для измерения тока и напряжения в цепях постоянного и переменного тока. Наиболее просто реализуются однопредельные электромагнитные амперметры и миллиамперметры. В однопредельном амперметре катушка включается непосредственно в цепь тока, как показано на рис. 4.8 а, в вольтметре последовательно с катушкой включается добавочный резистор (рис. 4.8 б).

Рис. 4.8. Схема однопредельного электромагнитного амперметра (а) и вольтметра (б)

Рис. 4.9. Схема трехпредельного электромагнитного амперметра

В многопредельных амперметрах рабочую катушку выполняют из нескольких секций, которые соединяются между собой с помощью переключателя различным образом. На рис. 4.9 показана схема трехпредельного амперметра. В многопредельных вольтметрах последовательно включаются несколько добавочных резисторов, которые переключаются в зависимости от предела.

Промышленностью выпускаются электромагнитные амперметры с номинальным током от долей ампера до двухсот ампер. Большое распространение получили щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,5 и 2,5. В некоторых случаях они могут использоваться на повышенных частотах (амперметры до 8 кГц). Лабораторные приборы выпускаются классов точности 0,5 и 1,0. Кроме рассмотренных измерительных механизмов, применяют также и электромагнитные логометрические механизмы.

Электромагнитные приборы обладают рядом достоинств, к которым можно отнести:

1) возможность использования как на постоянном, так и на переменном токе;

2) простоту конструкции и дешевизну;

3) надежность в эксплуатации;

4) широкий диапазон пределов измерений;

5) способность выдерживать большие перегрузки и др.

Недостатками являются:

1) большое собственное потребление энергии;

2) малая чувствительность;

3) сильное влияние внешних магнитных полей;

4) неравномерность шкалы.

Следует отметить, что изменяя форму сердечника и его расположение в катушке, можно получить практически равномерную шкалу, начиная с 20-25 % верхнего предела измеряемой величины.

Погрешности электромагнитных приборов

Погрешности электромагнитных приборов обусловлены следующими причинами: трением в опорах, гистерезисом материала сердечника, нагревом рабочей катушки, проходящим по ней током, изменением температуры окружающей среды и др. Рассмотрим погрешности, характерные для электромагнитных приборов.

Погрешность от гистерезиса материала сердечников проявляется при работе на постоянном токе.

Погрешность от нагрева рабочей катушки проходящим по ней током обусловлена изменением сопротивления катушки и пружин.

Температурная погрешность обусловлена изменением температуры окружающей среды и характерна для вольтметров, и определяется изменением сопротивления цепи катушки и упругости пружин (или растяжек).

Читайте также:  Красивые вязаные тапочки с описанием

Для компенсации температурной погрешности используются различные компенсационные схемы.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 11349 — | 7605 — или читать все.

Неподвижная часть — прибор

Неподвижная часть прибора представляет собой плоскую катушку / с обмоткой из изолированной медной проволоки. Концы обмотки присоединяются к зажимам прибора. Спиральная пружина 5, создающая противодействующий момент, соединена одним концом с корректором 6, а другим — с осью. В вырезе корректора помещается эксцентричный штифт с головкой винта. [1]

Неподвижная часть прибора представляет собой круглую катушку с обмоткой. Внутри ее укреплен неподвижный стальной сердечник. Подвижной частью прибора служит ось, к которой прикреплен подвижный стальной сердечник. [3]

Неподвижная часть прибора состоит из плоской катушки / со щелью, подключенной к клеммам. Спиральная пружина 6 служит для создания противодействующего момента и возвращения стрелки в первоначальное положение при отсутствии тока в электромагнитной катушке прибора. [5]

Неподвижная часть прибора состоит из плоской катушки / со щелью, подключенной к клеммам. Спиральная пружина б служит для создания противодействующего момента и возвращения стрелки в первоначальное положение при отсутствии тока в электромагнитной катушке прибора. [6]

Неподвижная часть прибора представляет собой плоскую катушку / с обмоткой из изолированной медной проволоки. Концы обмотки присоединяются к зажимам прибора. Спиральная пружина 5, создающая противодействующий момент, соединена одним концом с корректором 6, а другим — с осью. [7]

Неподвижная часть прибора представляет собой круглую катушку с обмоткой. [9]

Неподвижная часть прибора состоит из плоской катушки с узкой продольной щелью. [11]

Неподвижная часть прибора опирается на вал через шариковые подшипники. Небольшие колебания радиального зазора не сказываются заметно на работе прибора, так как сопротивление в радиальном зазоре мало в сравнении с сопротивлением в зубцах. Прибор не чувствителен также к изгибам вала и к изменению температуры. [12]

Неподвижную часть прибора составляют постоянный подковообразный магнит с наконечником и железный цилиндр. [13]

Неподвижную часть прибора составляет намагничивающая плоская катушка К. Обмотка катушки выполнена из медной изолированной проволоки, наложенной на картонный каркас. [14]

Неподвижной частью прибора является катушка из изолированной толстой проволоки. Число витков неподвижной катушки обычно небольшое. Подвижной частью прибора также является катушка, но намотанная тонкой проволокой и имеющая большое число витков. Подвижная катушка находится на оси. На этой же оси укреплена стрелка-указатель. [15]

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля, создаваемого током в неподвижной катушке, с подвижным ферромагнитным сердечником. Одна из конструкций электромагнитного механизма представлена на рис. 4.9, где 1 – катушка; 2 – сердечник, укрепленный на оси прибора; 3 – воздушный успокоитель; 4 – спиральная пружинка, создающая противодействующий момент.

При включении прибора под действием магнитного поля катушки сердечник втягивается внутрь катушки. Подвижная часть механизма поворачивается до тех пор, пока вращающий момент не уравновесится противодействующим моментом, создаваемым пружинкой.

Рис. 4.9. Устройство прибора электромагнитной системы

Вращающий момент, возникающий при прохождении тока I через катушку,

,

где L – индуктивность катушки; a – угол поворота подвижной части.

Из условия равенства вращающего и противодействующего моментов получим

. (4.6)

Из (4.6) следует, что при измерении в цепи переменного тока угол поворота подвижной части прибора электромагнитной системы пропорционален квадрату среднеквадратического значения тока, т.е. не зависит от направления тока. Поэтому электромагнитные приборы одинаково пригодны для измерений в цепях постоянного и переменного тока. В соответствии с (4.6) шкала прибора квадратичная, однако на практике ее можно приблизить к линейной подбором формы сердечника.

Читайте также:  Регулировка клапанов зил 157

Достоинствами приборов электромагнитной системы являются простота конструкции, способность выдерживать значительные перегрузки, возможность градуировки приборов, предназначенных для измерений в цепях переменного тока, на постоянном токе. К недостаткам приборов можно отнести большое собственное потребление энергии, невысокую точность, малую чувствительность и сильное влияние магнитных полей.

Промышленностью выпускаются амперметры электромагнитной системы с верхним пределом измерения от долей ампера до 200 А и вольтметры с пределами измерения от долей вольта до сотен вольт.

При необходимости расширения пределов измерения амперметров и вольтметров применяются шунты и добавочные сопротивления. Для расширения пределов измерения амперметров в области повышенных частот используются трансформаторы тока. На рис. 4.10 показано включение амперметров во вторичную обмотку трансформатора тока.

Рис. 4.10. Включение амперметра с трансформатором тока

На рис. 4.10 w1 – первичная обмотка; w 2 – вторичная обмотка; I1, и I2 – соответствующие токи.

Приборы электромагнитной системы применяются в основном в качестве щитовых амперметров и вольтметров переменного тока промышленной частоты. Класс точности щитовых приборов 1,5 и 2,5. В некоторых случаях они используются для работы на повышенных частотах: амперметры до 8000 Гц, вольтметры до 400 Гц. Выпускаются также переносные приборы электромагнитной системы классов точности 0,5 и 1,0 для измерения в лабораторных условиях.

Выпрямительные приборы. Выпрямительные приборы применяются для измерения напряжения и силы тока в частотном диапазоне от звуковых частот до высоких и сверхвысоких частот. Принцип работы таких приборов заключается в выпрямлении переменного тока с помощью полупроводниковых диодов (рис. 4.11).

Рис. 4.11. Выпрямительные приборы

Постоянная составляющая выпрямленного тока измеряется прибором магнитоэлектрической системы, например микроамперметром. В схеме прибора используют однополупериодные и двухполупериодные выпрямители.

В однополупериодных схемах (рис. 4.11, а) ток через магнитоэлектрический прибор, включенный последовательно с диодом Д1, пропускается только в положительный полупериод. В отрицательный полупериод, для которого сопротивление диода Д1 велико, ток протекает через диод Д2, включенный параллельно прибору. Для уравнивания сопротивления параллельных ветвей последовательно со вторым диодом включен резистор R, сопротивление которого равно сопротивлению измерительной цепи прибора. Подвижная часть магнитоэлектрического прибора обладает механической инерцией и при частотах выше 10…20 Гц не успевает следить за мгновенными значениями вращающего момента, реагируя только на среднее значение момента. Из уравнения шкалы магнитоэлектрического прибора (4.5) следует, что отклонение стрелки выпрямительного прибора пропорционально среднему за период значению переменного тока. Для однополупериодного выпрямителя при токе синусоидальной формы среднее значение определяется как

,

и показания прибора

. (4.7)

В двухполупериодных схемах выпрямителя (рис. 4.11, б) ток, протекающий через прибор, увеличивается вдвое по сравнению с током, протекающим в схеме рис. 4.11, а. Для синусоидального тока значение средневыпрямленного тока

.

Из (4.7) видно, что шкала выпрямительного прибора линейна, и при любой форме кривой измеряемого тока отклонение стрелки прибора пропорционально среднему за период значению. Однако на практике шкалу выпрямительных приборов всегда градуируют в среднеквадратических значениях напряжения (тока) синусоидальной формы. Следовательно, в приборах с двухполупериодным выпрямлением все значения оцифрованных делений шкалы как бы умножены на коэффициент формы КФ = 1,11. Отсюда следует, что при измерении тока или напряжения несинусоидальной формы полученный отсчет по шкале такого выпрямительного прибора сначала нужно разделить на 1,11 (получить выпрямленное значение измеряемой величины), а затем умножить на коэффициент формы, соответствующий форме реального сигнала. В приборах с однополупериодным выпрямлением вместо 1,11 подставляют 2,22.

Читайте также:  Маленькие птички на дереве живут текст

Выпрямительные приборы получили широкое распространение в качестве комбинированных измерителей постоянного и переменного тока и напряжения классов точности 1,5 и 2,5; с пределами измерения по току от 2 мА до 600 А; по напряжению – от 0,3 до 600 В.

Достоинствами выпрямительных приборов являются высокая чувствительность, малое собственное потребление энергии и возможность измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется возможностями применяемых диодов. Так, применение точечных кремниевых диодов обеспечивает измерение переменных токов и напряжений до частот порядка 10 4 …10 5 Гц. Основными источниками погрешностей этих приборов являются изменения параметров диодов с течением времени, влияние окружающей температуры, а также отклонение формы кривой измеряемого тока или напряжения от той, при которой произведена градуировка прибора.

Термоэлектрические приборы. Эти приборы используются для измерения токов в диапазоне высоких частот. Термоэлектрический прибор состоит из термоэлектрического преобразователя и прибора магнитоэлектрической системы. Простейший термопреобразователь (рис. 4.12) содержит нагреватель Н, по которому протекает измеряемый ток I, и связанную с ним термопару ТП.

Термоэлектрические преобразователи разделяются на контактные (рис. 4.12, а) и бесконтактные (рис. 4.12, б). В контактном преобразователе имеется гальваническая связь между нагревателем и термопарой, т.е. между входной и выходной цепью, что не всегда допустимо.

Рис. 4.12. Термоэлектрический преобразователь

В бесконтактном преобразователе нагреватель отделен от термопары изолятором из стекла или керамики, либо воздушной прослойкой.

Рабочий спай термопары (см. рис. 4.12, а) находится в тепловом контакте с нагревателем, который представляет собой тонкую проволоку из сплава с высоким удельным сопротивлением (нихром, манганин). Для изготовления термопары применяются еще более тонкие проволочки из термоэлектродных материалов. При прохождении измеряемого тока через нагреватель место контакта нагревателя и термопары нагревается до температуры t1, а холодный спай b остается при температуре окружающей среды t.

В установившемся тепловом режиме мощность, выделяемая в нагревателе Pвыд, и мощность, рассеиваемая нагревателем в окружающую среду Pрас, равны. Если учесть, что

,

где am – коэффициент теплоотдачи от нагревателя к окружающей среде; S – площадь теплоотдающей поверхности нагревателя; q – перегрев рабочего спая термопары над температурой окружающей среды (q = t1t); Rн – сопротивление нагревателя, то

.

При перегреве рабочего спая термопары на величину q в цепи термопары возникает термоэлектродвижущая сила

,

где k – коэффициент пропорциональности.

Таким образом, при прохождении измеряемого тока через нагреватель в цепи магнитоэлектрического прибора возникает постоянный ток IV, пропорциональный квадрату среднеквадратического значения измеряемого тока,

,

где RV – сопротивление магнитоэлектрического прибора.

Поскольку действие прибора основано на тепловом действии тока, то понятно, что магнитоэлектрический прибор с термоэлектрическим преобразователем измеряет среднеквадратическое значение переменного тока любой формы. Шкала термоэлектрического прибора близка к квадратичной.

Термоэлектрические приборы получили распространение преимущественно для измерения токов. В качестве вольтметров они практически не применяются, так как их входное сопротивление чрезвычайно мало.

К достоинствам приборов термоэлектрической системы можно отнести высокую чувствительность к измеряемому току, широкий диапазон частот, а также возможность измерения среднеквадратических значений токов произвольной формы. Недостатками термоэлектрических приборов являются неравномерность шкалы, зависимость показаний от температуры окружающей среды и большая инерционность термопреобразователей. Термоэлектрические приборы очень чувствительны к перегрузкам.

В зависимости от назначения термоэлектрические приборы имеют различные пределы измерения (от 1 мА до 50 А), классы точности (от 1,0 до 2,5) и частотный диапазон (от 45 Гц до сотен мегагерц).

Дата добавления: 2015-10-22 ; просмотров: 2865 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Навесы для тандыра фото
Специальные приспособления для тандыра делают его использование более удобным и безопасным. Кроме того, аксессуары защищают прибор от воздействия неблагоприятных факторов,...
На какой высоте вешать бра у зеркала
При организации освещения жилого дома не последнее место занимают настенные лампы — бра. При покупке такого светильника обычно опираются на...
На принтере pantum горит оранжевая лампочка
На принтере есть индикатор, который обычно горит зеленым цветом. Но если он становится красным, создается впечатление, что это сигнал, что...
Назначение основных элементов принтера
Принтер — периферийное устройство компьютера, предназначенное для перевода текста или графики на физический носитель из электронного вида малыми тиражами (от...
Adblock detector